1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
//! # Serde JSON //! //! JSON is a ubiquitous open-standard format that uses human-readable text to //! transmit data objects consisting of key-value pairs. //! //! ```json,ignore //! { //! "name": "John Doe", //! "age": 43, //! "address": { //! "street": "10 Downing Street", //! "city": "London" //! }, //! "phones": [ //! "+44 1234567", //! "+44 2345678" //! ] //! } //! ``` //! //! There are three common ways that you might find yourself needing to work //! with JSON data in Rust. //! //! - **As text data.** An unprocessed string of JSON data that you receive on //! an HTTP endpoint, read from a file, or prepare to send to a remote //! server. //! - **As an untyped or loosely typed representation.** Maybe you want to //! check that some JSON data is valid before passing it on, but without //! knowing the structure of what it contains. Or you want to do very basic //! manipulations like add a level of nesting. //! - **As a strongly typed Rust data structure.** When you expect all or most //! of your data to conform to a particular structure and want to get real //! work done without JSON's loosey-goosey nature tripping you up. //! //! Serde JSON provides efficient, flexible, safe ways of converting data //! between each of these representations. //! //! # JSON to the Value enum //! //! Any valid JSON data can be manipulated in the following recursive enum //! representation. This data structure is [`serde_json::Value`][value]. //! //! ```rust //! # use serde_json::{Number, Map}; //! # #[allow(dead_code)] //! enum Value { //! Null, //! Bool(bool), //! Number(Number), //! String(String), //! Array(Vec<Value>), //! Object(Map<String, Value>), //! } //! ``` //! //! A string of JSON data can be parsed into a `serde_json::Value` by the //! [`serde_json::from_str`][from_str] function. There is also //! [`from_slice`][from_slice] for parsing from a byte slice &[u8], //! [`from_iter`][from_iter] for parsing from an iterator of bytes, and //! [`from_reader`][from_reader] for parsing from any `io::Read` like a File or //! a TCP stream. //! //! ```rust //! # extern crate serde_json; //! # use serde_json::Error; //! # pub fn example() -> Result<(), Error> { //! use serde_json::Value; //! //! let data = r#" { "name": "John Doe", "age": 43, ... } "#; //! let v: Value = serde_json::from_str(data)?; //! println!("Please call {} at the number {}", v["name"], v["phones"][0]); //! # Ok(()) } //! # fn main() {} //! ``` //! //! The `Value` representation is sufficient for very basic tasks but is brittle //! and tedious to work with. Error handling is verbose to implement correctly, //! for example imagine trying to detect the presence of unrecognized fields in //! the input data. The compiler is powerless to help you when you make a //! mistake, for example imagine typoing `v["name"]` as `v["nmae"]` in one of //! the dozens of places it is used in your code. //! //! # JSON to strongly typed data structures //! //! Serde provides a powerful way of mapping JSON data into Rust data structures //! largely automatically. //! //! ```rust //! # extern crate serde_json; //! # #[macro_use] extern crate serde_derive; //! # use serde_json::Error; //! # pub fn example() -> Result<(), Error> { //! #[derive(Serialize, Deserialize)] //! struct Person { //! name: String, //! age: u8, //! address: Address, //! phones: Vec<String>, //! } //! //! #[derive(Serialize, Deserialize)] //! struct Address { //! street: String, //! city: String, //! } //! //! let data = r#" { "name": "John Doe", "age": 43, ... } "#; //! let p: Person = serde_json::from_str(data)?; //! println!("Please call {} at the number {}", p.name, p.phones[0]); //! # Ok(()) } //! # fn main() {} //! ``` //! //! This is the same `serde_json::from_str` function as before, but this time we //! assign the return value to a variable of type `Person` so Serde JSON will //! automatically interpret the input data as a `Person` and produce informative //! error messages if the layout does not conform to what a `Person` is expected //! to look like. //! //! Any type that implements Serde's `Deserialize` trait can be deserialized //! this way. This includes built-in Rust standard library types like `Vec<T>` //! and `HashMap<K, V>`, as well as any structs or enums annotated with //! `#[derive(Deserialize)]`. //! //! Once we have `p` of type `Person`, our IDE and the Rust compiler can help us //! use it correctly like they do for any other Rust code. The IDE can //! autocomplete field names to prevent typos, which was impossible in the //! `serde_json::Value` representation. And the Rust compiler can check that //! when we write `p.phones[0]`, then `p.phones` is guaranteed to be a //! `Vec<String>` so indexing into it makes sense and produces a `String`. //! //! # Constructing JSON //! //! Serde JSON provides a [`json!` macro][macro] to build `serde_json::Value` //! objects with very natural JSON syntax. In order to use this macro, //! `serde_json` needs to be imported with the `#[macro_use]` attribute. //! //! ```rust //! #[macro_use] //! extern crate serde_json; //! //! fn main() { //! // The type of `john` is `serde_json::Value` //! let john = json!({ //! "name": "John Doe", //! "age": 43, //! "phones": [ //! "+44 1234567", //! "+44 2345678" //! ] //! }); //! //! println!("first phone number: {}", john["phones"][0]); //! //! // Convert to a string of JSON and print it out //! println!("{}", john.to_string()); //! } //! ``` //! //! The `Value::to_string()` function converts a `serde_json::Value` into a //! `String` of JSON text. //! //! One neat thing about the `json!` macro is that variables and expressions can //! be interpolated directly into the JSON value as you are building it. Serde //! will check at compile time that the value you are interpolating is able to //! be represented as JSON. //! //! ```rust //! # #[macro_use] extern crate serde_json; //! # fn random_phone() -> u16 { 0 } //! # fn main() { //! let full_name = "John Doe"; //! let age_last_year = 42; //! //! // The type of `john` is `serde_json::Value` //! let john = json!({ //! "name": full_name, //! "age": age_last_year + 1, //! "phones": [ //! format!("+44 {}", random_phone()) //! ] //! }); //! # let _ = john; //! # } //! ``` //! //! This is amazingly convenient but we have the problem we had before with //! `Value` which is that the IDE and Rust compiler cannot help us if we get it //! wrong. Serde JSON provides a better way of serializing strongly-typed data //! structures into JSON text. //! //! # Serializing data structures //! //! A data structure can be converted to a JSON string by //! [`serde_json::to_string`][to_string]. There is also //! [`serde_json::to_vec`][to_vec] which serializes to a `Vec<u8>` and //! [`serde_json::to_writer`][to_writer] which serializes to any `io::Write` //! such as a File or a TCP stream. //! //! ```rust //! # extern crate serde_json; //! # #[macro_use] extern crate serde_derive; //! # use serde_json::Error; //! # pub fn example() -> Result<String, Error> { //! #[derive(Serialize, Deserialize)] //! struct Address { //! street: String, //! city: String, //! } //! //! let address = Address { //! street: "10 Downing Street".to_owned(), //! city: "London".to_owned(), //! }; //! //! let j = serde_json::to_string(&address)?; //! # Ok(j) } //! # fn main() {} //! ``` //! //! Any type that implements Serde's `Serialize` trait can be serialized this //! way. This includes built-in Rust standard library types like `Vec<T>` and //! `HashMap<K, V>`, as well as any structs or enums annotated with //! `#[derive(Serialize)]`. //! //! [value]: https://docs.serde.rs/serde_json/value/enum.Value.html //! [from_str]: https://docs.serde.rs/serde_json/de/fn.from_str.html //! [from_slice]: https://docs.serde.rs/serde_json/de/fn.from_slice.html //! [from_iter]: https://docs.serde.rs/serde_json/de/fn.from_iter.html //! [from_reader]: https://docs.serde.rs/serde_json/de/fn.from_reader.html //! [to_string]: https://docs.serde.rs/serde_json/ser/fn.to_string.html //! [to_vec]: https://docs.serde.rs/serde_json/ser/fn.to_vec.html //! [to_writer]: https://docs.serde.rs/serde_json/ser/fn.to_writer.html //! [macro]: https://docs.serde.rs/serde_json/macro.json.html #![cfg_attr(feature = "cargo-clippy", deny(clippy, clippy_pedantic))] // Because of "JavaScript"... fixed in Manishearth/rust-clippy#1071 #![cfg_attr(feature = "cargo-clippy", allow(doc_markdown))] // Whitelisted clippy_pedantic lints #![cfg_attr(feature = "cargo-clippy", allow( // Deserializer::from_str, from_iter, into_iter should_implement_trait, // integer and float ser/de requires these sorts of casts cast_possible_truncation, cast_possible_wrap, cast_precision_loss, cast_sign_loss, // string ser/de uses indexing and slicing indexing_slicing, // things are often more readable this way shadow_reuse, shadow_unrelated, single_match_else, stutter, // not practical missing_docs_in_private_items, ))] #![deny(missing_docs)] extern crate num_traits; extern crate core; #[macro_use] extern crate serde; extern crate itoa; extern crate dtoa; #[cfg(feature = "preserve_order")] extern crate linked_hash_map; #[doc(inline)] pub use self::de::{Deserializer, StreamDeserializer, from_iter, from_reader, from_slice, from_str}; #[doc(inline)] pub use self::error::{Error, Result}; #[doc(inline)] pub use self::ser::{Serializer, to_string, to_string_pretty, to_vec, to_vec_pretty, to_writer, to_writer_pretty}; #[doc(inline)] pub use self::value::{Map, Number, Value, from_value, to_value}; #[macro_use] mod macros; pub mod de; pub mod error; pub mod map; pub mod ser; pub mod value; mod number; mod read;